728x90
이번 포스팅에서는 PyTorch의 nn.Embedding 모듈을 사용하여 정수 인덱스를 임베딩 벡터로 변환해보도록 하겠습니다.
nn.Embedding은 텍스트 처리에서 자주 사용되는 모듈입니다.
앞으로 자연어처리(NLP), 감정 분석, TTS(음성 합성) 등 다양한 딥러닝 프로젝트에 활용될 수 있습니다.
우선 터미널에서 PyTorch를 다운로드 받아줍니다.
> pip install torch
전체 코드입니다.
embedding_example.py
import torch
import torch.nn as nn
# 임베딩 정의: 총 10개의 단어, 각 단어를 3차원 벡터로 임베딩
embedding = nn.Embedding(num_embeddings=10, embedding_dim=3)
# 임베딩할 입력 (정수 인덱스): 예를 들어 문장에서 [2, 5, 8] 이라는 단어들이 있다고 가정
input_ids = torch.LongTensor([2, 5, 8])
# 임베딩 수행
output = embedding(input_ids)
print("입력 인덱스:", input_ids)
print("임베딩 결과:\n", output)
실행 결과입니다.
'Python' 카테고리의 다른 글
[Python] PyTorch 활용해서 손글씨 데이터를 숫자로 분류하기 (2) | 2025.08.13 |
---|---|
[Python] 오디오 데이터 전처리 하기 (1) | 2025.08.12 |
[Python] 폴더 안 이미지 자동 리사이즈 하기 ( WebP 변환 후 일괄 저장) (0) | 2025.07.10 |
[Python] 티스토리 웹 크롤링하기 (requests, BeautifulSoup) (2) | 2025.07.10 |
[Python] NumPy를 이용한 간단한 행렬 연산 및 TensorFlow로 선형 회귀 모델 구축 (0) | 2025.07.02 |